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Math 3527 (Number Theory 1)

Lecture #24

Polynomial Functions, Factorization in F [x ]:

Values of Polynomials, Polynomial Functions

Roots of Polynomials, Factorization

Repeated Factors and the Derivative

This material represents §4.3.1 from the course notes.
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Polynomial Functions, I

As is likely familiar from high-school algebra, “plugging values in”
to a polynomial in F [x ] allows us to glean some information about
potential factorizations.

Definition

If F is a field and p = a0 + a1x + · · ·+ anxn is an element of F [x ],
for any r ∈ F we define the value p(r) to be the element
a0 + a1r + · · ·+ anrn ∈ F .

Examples:

If p = 1 + x2 in C[x ], then p(1) = 1 + 12 = 2, and
p(i) = 1 + i2 = 0.

If p = 1 + x2 in F5[x ], then p(0) = 1, p(1) = 2, p(2) = 0,
p(3) = 0, and p(4) = 2.
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Polynomial Functions, II

By evaluating a polynomial p(x) ∈ F [x ] at every value r ∈ F , we
may view p as a function from F to F .

Important Warning:

If p = x3 in F2[x ], observe that p(0) = 0 and p(1) = 1.

If q = x2 in F2[x ], observe that q(0) = 0 and q(1) = 1.

Thus, as functions from F2 to F2, p and q are the same.

However, as polynomials in F [x ], p and q are different, since
their degrees are different.

As another (perhaps more unsettling) example, notice that if
p = x3 − x in F3[x ], then p(0) = p(1) = p(2) = 0, and so p is
identically zero as a function, but it is not the zero polynomial.
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Roots of Polynomials, I

There is a fundamental connection between the values of a
polynomial and its factorization:

Proposition (Remainder/Factor Theorem)

Let F be a field. If p ∈ F [x ] is a polynomial and r ∈ F , then the
remainder upon dividing p(x) by x − r is p(r). In particular, x − r
divides p(x) if and only if p(r) = 0.

In this situation when p(r) = 0, we say r is a zero or a root of p(x).

Example: The value r = 1 is a root of p = x3 − 2x + 1, since
p(1) = 0. Indeed, we have a factorization p = (x − 1)(x2 + x − 1).
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Roots of Polynomials, II

Proof:

Suppose p(x) = a0 + a1x + · · ·+ anxn.

Observe first that
(xk − rk) = (x − r)(xk−1 + xk−2r + · · ·+ xrk−2 + rk−1), so in
particular, x − r divides xk − rk for all k .

Now write p(x)− p(r) =
∑n

k=0 ak(xk − rk), and since x − r
divides each term in the sum, it divides p(x)− p(r).

Since p(r) is a constant, it is therefore the remainder after
dividing p(x) by x − r .

Finally, since the remainder is unique, we see that x − r
divides p(x) if and only if the remainder p(r) is equal to zero.
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Roots of Polynomials, III

Proposition (Number of Roots)

Let F be a field. If p ∈ F [x ] is a polynomial of degree d, then p
has at most d distinct roots in F .

Proof: Induct on the degree d .

It is easy to see a polynomial of degree 1 has exactly 1 root.

Now suppose the result holds for all polynomials of degree
≤ d and let p be have degree d + 1.

If p has no roots we are done, so suppose p(r) = 0. By
factoring, we see p(x) = (x − r)q(x) for some polynomial
q(x) of degree d .

By induction, q(x) has at most d roots: then p(x) has at
most d + 1 roots, because (a− r)q(a) = 0 only when a = r or
q(a) = 0 (since F is a field).
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Factoring Polynomials, I

In general, it is not easy to determine when an arbitrary polynomial
is irreducible, or to find its factorization if it has one. In low degree,
this task can be done by examining all possible factorizations.

Proposition (Polynomials of Small Degree)

If F is a field and q(x) ∈ F [x ] has degree 2 or 3 and has no roots
in F , then q(x) is irreducible.

Proof:

If q(x) = a(x)b(x), taking degrees shows
3 = deg(q) = deg(a) + deg(b).

Since a and b both have positive degree, one of them must
have degree 1. Then its root is also a root of q(x).

Taking the contrapositive gives the desired statement.
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Factoring Polynomials, II

Example: Show that p = x2 + 2x + 11 is irreducible in R[x ].

Over R, the polynomial has no roots (since it is always
positive).

Alternatively, by the quadratic formula, we can compute the
roots explicitly as r = −1±

√
−10, and these are not real

numbers.

Either way, since p has degree 2 and no roots, it is irreducible.
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Factoring Polynomials, III

Example: Show that q = x3 + x + 1 is irreducible in F5[x ].

To test whether this polynomial has any roots in F5, we can
simply plug in every possible value.

Explicitly, we see q(0) = 1, q(1) = 3, q(2) = 1, q(3) = 1, and
q(4) = 4.

Since none of these values is 0, q has no roots.

Thus, since q has degree 3, q is irreducible in F5[x ].
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Factoring Polynomials, IV

Example: Determine if q = x2 + x + 2 is irreducible in F7[x ].

To test whether this polynomial has any roots in F7, we can
simply plug in every possible value.

Explicitly, we see q(0) = 2, q(1) = 4, q(2) = 1, q(3) = 0.

Since q(3) = 0 we see that x − 3 is a divisor of q, and we
obtain an explicit factorization q = (x − 3)(x − 3).
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Factoring Polynomials, V

For polynomials of larger degree, determining irreducibility can be
a much more difficult task. For certain particular fields, we can say
more about the structure of the irreducible polynomials.

Theorem (Fundamental Theorem of Algebra)

Every polynomial of positive degree in C[x ] has at least one root in
C. Therefore, the irreducible polynomials in C[x ] are precisely the
polynomials of degree 1, and so every polynomial in C[x ] factors
into a product of degree-1 polynomials.

This is a standard result of complex analysis and we take it for
granted.
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Factoring Polynomials, VI

It is more difficult to test whether a polynomial is irreducible in
Q[x ]. We will state some useful results in this direction:

Proposition (Rational Root Test)

Suppose p(x) = anxn + an−1xn−1 + · · ·+ a0 has integer
coefficients. Then any rational root r/s (in lowest terms) must
have r |a0 and s|an.

Proof:

If p(r/s) = 0, then an(r/s)n + an−1(r/s)n−1 + · · ·+ a0 = 0.

Clearing denominators and rearranging yields
anrn = s(−an−1rn−1 − · · · − a0sn−1).

Thus, s divides anrn, but since s and r are relatively prime,
this means s divides an.

In a similar way, we can see that r divides a0sn hence a0.
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Factoring Polynomials, VII

Example: Determine whether or not the polynomial
p(x) = x3 + 4x + 4 is irreducible in Q[x ].

Since this polynomial has degree 3, we need only determine
whether it has any roots in Q.

By the rational root test, the only possible rational roots are
±1, ±2, and ±4.

We calculate p(1) = 9, p(−1) = −1, p(2) = 20,
p(−2) = −12, p(4) = 84, p(−4) = −76.

Since none of these values is zero, there are no rational roots,
and the polynomial is irreducible.
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Factoring Polynomials, VIII

If the degree is larger than 3, then our basic procedure of searching
for roots will not always reveal the factorization.

For example, the polynomial p(x) = x4 + 3x2 + 2 has no roots in
R[x ], but does factor as p(x) = (x2 + 1)(x2 + 2).

In general, unless a better procedure is available, it is necessary to
examine all possible factorizations using case analysis. This can be
quite lengthy even for polynomials of degree 4.

One useful fact for doing such case analysis is that (if the
polynomial has integer coefficients) its factorization in Q[x ] must
also have integer coefficients. (This is a technical result known as
Gauss’s lemma, which we will omit.)
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Factoring Polynomials, IX

Example: Show x4 + x3 − 2x2 + x + 1 is irreducible in Q[x ].

First, by the rational root test, the only possible roots of this
polynomial are ±1, neither of which is a root.

The only other possible factorization can be put into the form
x4 + x3 − 2x2 + x + 1 = (x2 + ax + b)(x2 + cx + d).

By expanding and comparing coefficients, we see that
a + c = 1, b + ac + d = −2, ad + bc = 1, and bd = 1.

The last equation gives (b, d) = (1, 1) or (−1,−1).

If b = d = 1 then we obtain the equations a + c = 1 and
ac = −4, which has no integer solutions.

If b = d = −1 then we obtain a + c = 1, ac = 0, and
a + c = −1, which has no solutions at all.

Therefore, p(x) is irreducible, as claimed.
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Repeated Factors, I

Another property that we can fruitfully study in a general field is
the presence of “repeated factors”.
Examples:

Over C, the polynomial x3 + x2 − x − 1 factors into
irreducibles as (x − 1)2(x + 1), which has the repeated factor
x − 1.

Over F2, the polynomial x4 + x2 + 1 factors into irreducibles
as (x2 + x + 1)2, which has the repeated factor x2 + x + 1.

Over F3, the polynomial x3 + 1 factors into irreducibles as
(x + 1)3, which has the repeated factor x + 1.
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Repeated Factors, II

As a first goal, we can give a necessary condition for when a
polynomial has repeated roots.

Recall from calculus that if a polynomial q(x) has a “double
root” at r , then q(r) and q′(r) are both zero. By the factor
theorem, this is equivalent to saying that q and q′ are both
divisible by x − r .

We can formulate a similar test over an arbitrary field using a
purely algebraic definition of the derivative.
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Repeated Factors, III

Definition

If q(x) =
n∑

k=0

akxk is a polynomial in F [x ], its derivative is the

polynomial q′(x) =
n∑

k=0

kakxk−1.

Examples:

In C[x ], the derivative of x6 − 4x2 + x is 6x5 − 8x + 1.

In Fp[x ], the derivative of xp2 − x is p2xp2−1 − 1 = −1.
Notice here that although the degree of the original
polynomial is p2, the degree of the derivative is 0.
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Repeated Factors, IV

The standard rules for differentiation carry over to our definition
(as can be shown using a bit of algebra):

The derivative is additive: (f + g)′(x) = f ′(x) + g ′(x).

The derivative obeys the Product Rule:
(f · g)′(x) = f ′(x)g(x) + f (x)g ′(x).

The key idea is that the derivative can detect repeated roots:

Proposition (Repeated Factors)

Let F be a field and q ∈ F [x ]. Then r is a repeated root of q if
and only if q(r) = q′(r) = 0. More generally, q has a repeated
factor if and only if q and q′ are not relatively prime.
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Repeated Factors, V

Proof: First suppose that q(x) has a repeated root r : then
q(x) = (x − r)2s(x) for some s(x) ∈ F [x ].

Then q′(x) = (x − r) · [2s(x) + (x − r)s ′(x)].

Thus, q′ is also divisible by x − r in F [x ], so by the factor
theorem, we conclude that q(r) = q′(r) = 0.

Conversely, suppose that q(r) = q′(r) = 0.

Then by the factor theorem we may write q(x) = (x − r)a(x).

The product rule gives q′(x) = a(x) + (x − r)a′(x), so
q′(r) = a(r). Thus a(r) = 0 and so x − r divides a(x): then
q(x) is divisible by (x − r)2 so r is a repeated root.

By a similar argument, any repeated factor of q will yield a
nontrivial common factor of q and q′ in F [x ].
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Repeated Factors, VI

Since we can efficiently compute the gcd of q(x) and q′(x) using
the Euclidean algorithm in F [x ], we can quickly determine if a
given polynomial has a repeated factor.

Example: Determine whether q(x) = x4 + 3x3 + 3x2 + 3x + 1 has
a repeated factor in F5[x ].

We have q′(x) = 4x3 + 4x2 + x + 3.

Performing the Euclidean algorithm on q(x) and q′(x) will
yield a greatest common divisor of 2x2 + 3x + 2.

Since the gcd has positive degree, q(x) has a repeated factor.

Indeed, if we divide q(x) by 2x2 + 3x + 2, we will see that
q(x) = 4(2x2 + 3x + 2)2.
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Summary

We defined how to evaluate a polynomial p ∈ F [x ] at a value
r ∈ F and discussed the remainder and factor theorems.

We showed that a polynomial of 2 or 3 is irreducible if and only if
it has no roots, and discussed how to factor polynomials of small
degree.

We defined the derivative p′ and showed that p has a repeated
factor if and only if p and p′ are both divisible by that factor.

Next lecture: Finite fields.


